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Abstract. A general lattice Boltzmann method for simulation of fluids with tailored transport coefficients
is presented. It is based on the recently introduced quasi-equilibrium kinetic models, and a general lattice
Boltzmann implementation is developed. Lattice Boltzmann models for isothermal binary mixtures with
a given Schmidt number, and for a weakly compressible flow with a given Prandtl number are derived and
validated.

PACS. 47.11.-j Computational methods in fluid dynamics – 05.20.Dd Kinetic theory

1 Introduction

The lattice Boltzmann (LB) method is a powerful ap-
proach to hydrodynamics, with applications ranging from
large Reynolds number flows to flows at a micron scale,
porous media and multi-phase flows [1]. However, in spite
of its rapid development over a decade, the method is still
lacking a systematic and flexible construction of numeri-
cal schemes for situations beyond a simple fluid, such as
mixture models with a given Schmidt number, or thermal
models with a given Prandtl number.

In this paper, we introduce a general method of con-
structing the lattice Boltzmann models. Our approach is
based on recently introduced quasi-equilibrium (QE) ki-
netic models [2,3]. The structure of the paper is as fol-
lows: first, for the sake of completeness, we remind the
construction of continuous time-space QE models. After
that, we derive a lattice Boltzmann discretization scheme
of the QE models. The resulting quasi-equilibrium lattice
Boltzmann method (QELBM) is illustrated with two ex-
amples of particular interest. The first example is the ther-
mal model with a prescribed Prandtl number. The second
example is the isothermal binary mixture model with a
prescribed Schmidt number. Basic steps of construction
of these models are presented and numerical validation is
provided.
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2 Quasi-equilibrium kinetic models

2.1 General

We address the class of lattice Boltzmann models
equipped with the Boltzmann entropy function of the
form,

H =
n∑

i=1

fi ln
(

fi

Wi

)
, (1)

where fi ≥ 0 are populations of the discrete velocities vi,
i = 1, . . . , n, and Wi > 0 are corresponding weights. A
wide class of relevant entropy functions (1) pertinent to
simulation of hydrodynamics was described in [4–8]. In
the examples below we shall use the H-function for the
isothermal model [4] and the recently introduced weakly
compressible thermal model [6] in two dimensions, for
which the set of nine velocities vi and corresponding
weights Wi are

vx = {0, 1, 0,−1, 0, +1,−1,−1, +1}
vy = {0, 0, 1, 0,−1, +1, +1,−1,−1}
W = (1/36) {16, 4, 4, 4, 4, 1, 1, 1, 1} . (2)

We begin with a generic construction of the quasi-
equilibrium kinetic models [2,3] specified for the discrete
velocity case. Let M = {M1, . . . , MkM } be a set of lo-
cally conserved fields, and N = {N1, . . . , NkN} be a set
of quasi-conserved slow fields. Functions Mm and Nl are
assumed linear functions (moments) of the populations,
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Mm =
∑

i Mmifi and Nl =
∑

i Nlifi. The choice of M
and N depends on the particular problem but we al-
ways assume that the density is included into the list M ,
ρ = M1 =

∑n
i=1 fi. The equilibrium population vector

f eq(M) is defined as the minimizer of the H-function (1)
under fixed M . The quasi-equilibrium f∗(M, N) is defined
as the minimizer of H under fixed M and N . By construc-
tion, functions f∗ and f eq satisfy consistency relations

M(f∗(M, N)) = M,

N(f∗(M, N)) = N,

M(f eq(M)) = M. (3)

The quasi-equilibrium kinetic model reads

∂tfi + viα∂αfi = − 1
τ1

[fi − f∗
i (M(f), N(f))]

− 1
τ2

[f∗
i (M(f), N(f)) − f eq

i (M(f))] . (4)

Denoting the right hand side (the collision integral) as Qi,
it is easy to see that consistency condition implies local
conservation laws, M(Q) = 0. Note that the first part
of the collision integral which describes relaxation to the
quasi-equilibrium, also conserves the N -fields, N(f−f∗) =
0. Moreover, it is straightforward to prove the H-theorem.
For that, it suffices to rewrite

Qi = − 1
τ2

[fi − f eq
i ] −

(
τ2 − τ1

τ1τ2

)
[fi − f∗

i ]. (5)

The entropy production σ =
∑n

i=1(∂H/∂fi)Qi becomes

σ = − 1
τ2

n∑

i=1

ln
(

fi

f eq
i

)
(fi − f eq

i )

−
(

τ2 − τ1

τ1τ2

) n∑

i=1

ln
(

fi

f∗
i

)
(fi − f∗

i ), (6)

and is non-positive semi-definite provided relaxation times
satisfy the hierarchy,

τ1 ≤ τ2. (7)

Thus, in the QE models, relaxation to the equilibrium is
split in two steps. In the first step, the distribution func-
tions relaxes to the quasi-equilibrium with the faster re-
laxation time τ1. In the second step, the quasi-equilibrium
relaxes to the equilibrium with the slower relaxation times
τ2. If τ1 = τ2, the intermediate relaxation step to the
quasi-equilibrium disappears from (4), and it reduces to
the Bhatnagar-Gross-Krook (BGK) model.

2.2 Triangle entropy method

For a practical implementation, explicit form of the func-
tions f eq

i (M) and f∗
i (M, N) are required. While for most

of the cases, the equilibrium f eq
i can be found explicitly

either in a closed form or in a form of expansion, explicit
construction of the quasi-equilibrium is case-dependent.
Here we suggest a simple way to find quasi-equilibria in
explicit form by perturbation around the equilibrium [2,9].

Let us assume that the equilibrium f eq(M) has been found
explicitly, and that near the equilibrium

f∗ = f eq(M) + δf∗(M, N). (8)

Expanding the entropy function H (1) at the equilibrium
to quadratic terms, we obtain

H(f eq + δf) = H(f eq) +
n∑

i=1

δfi

(
ln

(
f eq

i

Wi

)
+ 1

)

+
1
2

n∑

i=1

δf2
i

f eq
i

+ O(δf3). (9)

The quadratic expansion of the entropy function (9) main-
tains convexity, and we find its minimizer δf∗ subject to
the linear constraints

n∑

i=1

Mkiδf
∗
i = 0,

n∑

i=1

Nliδf
∗
i = Nl − N eq

l , (10)

where N eq = N(f eq(M)) are the values of the non-
conserved fields at equilibrium. Solution to this minimiza-
tion problem has the form,

f∗ = f eq
i (M) + δf∗

i

= f eq
i (M)

(
1 +

kM∑

s=1

λsMsi +
kN∑

s=1

χsNsi

)
, (11)

where Lagrange multipliers λs and χs are found upon sub-
stituting function (11) into the constrains (10), and solv-
ing the (kM + kN )× (kM + kN ) linear algebraic problem.
Introducing a (kM + kN )-dimensional vector of Lagrange
multipliers, (λ, χ) = (λ1, . . . , λkM , χ1, . . . , χkN ), and ma-
trices

(AMM )kl =
n∑

i=1

Mkif
eq
i Mli, k, l = 1, . . . , kM

(AMN )kl =
n∑

i=1

Mkif
eq
i Nli, k = 1, . . . , kM , l = 1, . . . , kN

(ANN )kl =
n∑

i=1

Nkif
eq
i Nli, k, l = 1, . . . , kN , (12)

we find the solution in the matrix form,

(
λ
χ

)
=

(
AMM AMN

AT
MN ANN

)−1 (
0

N − N eq

)
, (13)

where T denotes transposition, and N − N eq is the
kN -dimensional vector (N1 − N eq

1 , . . . , NkN − N eq
kN

). Note
that the solution depends linearly on the deviation of the
non-conserved fields N − N eq and non-linearly on the lo-
cally conserved M . For this quasi-linear quasi-equilibrium,
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the entropy production becomes

σ = − 1
τ2

n∑

i=1

(fi − f eq
i )2

f eq
i

−
(

τ2 − τ1

τ1τ2

) n∑

i=1

(fi − f∗
i )2

f eq
i

+ O(δf3). (14)

Thus, with the use of the triangle entropy method, the
kinetic model satisfies the entropy production inequality
(both of the two quadratic forms in (14) are non-positive
semi-definite) once the populations remain close to the
local equilibrium. This is sufficient for most of the appli-
cations.

3 Quasi-equilibrium lattice Boltzmann
method

We shall now derive a second-order time discretization for
the generic kinetic equation (4). Since the derivation only
uses the consistency condition (3), it is equally applica-
ble to exact quasi-equilibria and to those obtained by the
triangle entropy method (8). Following [10], kinetic equa-
tions (4) are integrated in time from t to t+δt along char-
acteristics, and the time integral of the right hand side is
evaluated by trapezoidal rule. Introducing a map

fi → gi = fi − δt

2
Qi(f), (15)

the result is written as

gi(x + ciδt, t + δt) = gi(x, t) − ω1[gi(x, t) − f∗
i (x, t)]

−ω1τ1

τ2
[f∗

i (x, t) − f eq
i (x, t)], (16)

where

ω1 =
2δt

2τ1 + δt
,

f∗(x, t) = f∗(M(f), N(f)),
f eq

i (x, t) = f eq
i (M(f)). (17)

Note that the right hand side in (16) still contains terms
which depend on populations f rather than on the func-
tion g (15). In order to obtain a closed-form equation
solely in terms of functions g, we first remark that, taking
locally conserved moments of the map (15) we have (same
as in the BGK case) M(f) = M(g), thus f eq(f) = f eq(g)
in the second term in (16). For the quasi-conserved fields
N , the situation is slightly different. Evaluating the mo-
ments N of the map (15), we obtain

N(g) = N(f) +
δt

2τ2
(N(f) − N eq(f)). (18)

Inverting this relation, and substituting it into (16), after
simple transformations we obtain:

gi(x + ciδt, t + δt) = (1 − ω1)gi + ω1

(
τ1

τ2

)
f eq

i (M)

+ω1

(
τ2 − τ1

τ2

)
f∗

i (M, N ′), (19)

where M = M(g), while N ′ is evaluated according to the
rule

N ′ =
(

1 − δt

2τ2 + δt

)
N(g) +

δt

2τ2 + δt
N eq(g). (20)

Equation (19) is the basic second-order time stepping algo-
rithm for the quasi-equilibrium lattice Boltzmann models,
and is the main result of this paper. It is important to note
the shift in the dependence of the quasi-equilibrium pop-
ulation f∗, it does not depend just on N(g) but rather
on a convex linear combination between N(g) and the
equilibrium value N eq(g). Discretization in space depends
on the problem at hand (in the simplest case, the lattice
Boltzmann discretization is readily applicable). We shall
now proceed with specific examples of QELBM.

4 Examples

4.1 One-component fluid with a given Prandtl number

Navier-Stokes equations for a one-component compress-
ible fluid are characterized by the Prandtl number, Pr =
(Cpµ)/κ, where Cp is the specific heat at constant pressure
(Cp = (D + 2)/2 is specific heat of ideal gas below), µ is
viscosity coefficient, and κ is thermal conductivity. When
a single relaxation time kinetic equation is used (for ex-
ample, the BGK model), this results in a fixed Prandtl
number. As we shall see it below, physical consistency
of the QE models, the relaxation time hierarchy (7), im-
plies that two models with two different quasi-equilibria
are required in order to cover the entire range of Prandtl
number. For the sake of concreteness, we consider a sim-
ple, weakly compressible flow model on the standard two-
dimensional D2Q9 lattice [6,13]. The locally conserved
fields M are density ρ, momentum density j, and pres-
sure density p,

n∑

i=1

{1, vi, v
2
i }fi = {ρ, j, 2p + ρ−1j2}. (21)

To second order in the momentum, the equilibrium
reads [6,13]:

f eq
i (ρ, j, p) = ρ

(
1 − p

ρ

)2
(

p
ρ

2(1 − p
ρ)

)v2
i [

1 +
viαjα

p

+
jαjβ

2p2

(
viαviβ −

4(p
ρ)2 + v2

i (1 − 3 p
ρ )

2(1 − p
ρ )

δαβ

)]
. (22)

This model operates in a small temperature window T =
p/ρ, around the reference temperature T0 = 1/3 (see
Refs. [6,13] for an estimate of the temperature window).
We remark that, due to a low symmetry of the velocity set,
the lattice BGK (LBGK) model with the equilibrium (22)
gives PrLBGK = 4 [13] (not Pr = 1, as in the continuous
kinetic theory or thermal lattice Boltzmann models with
a higher symmetry [5,8]). In the first case (Pr < PrLBGK),
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the specified slow variables N are the components of the
heat flux q,

qα =
n∑

i=1

(viα − uα) (vi − u)2 fi, (23)

where u = j/ρ is the mean velocity. In the opposite case
(Pr > PrLBGK), the slow variables N are the components
of the stress tensor Θ

Θαβ =
n∑

i=1

[
(viα − uα) (viβ − uβ) − 2

D
δαβ(vi − u)2

]
fi.

(24)
Explicit expressions for the pertinent quasi-equilibria,
f∗

i (ρ, j, p, q) (case (23), Pr ≤ PrLBGK) and f∗
i (ρ, j, p, Θ)

(case (24), Pr ≥ PrLBGK) are easily found using the
explicit formulas of the triangle entropy method, equa-
tions (11) and (13), and are not displayed here. Using the
Chapman-Enskog method, we derive the hydrodynamic
equations (Navier-Stokes-Fourier) for the density, momen-
tum and temperature from the continuous QE models (4)
with the corresponding quasi-equilibria f∗

i (ρ, j, p, q) and
f∗

i (ρ, j, p, Θ) (note that the explicit form of f∗
i is not re-

quired to perform this analytical computation, the consis-
tency condition 3 suffices). The viscosity µ and the ther-
mal conductivity κ coefficients thus obtained, imply the
following Prandtl number:

µ = ρT0τ1, κ =
1
2
ρT0τ2 ⇒ Pr = 4

τ1

τ2
≤ PrLBGK (23),

(25)

µ = ρT0τ2, κ =
1
2
ρT0τ1 ⇒ Pr = 4

τ2

τ1
≥ PrLBGK (24).

(26)

A comment to these formulas is in order: the hierarchy
of relaxation times (τ1 ≤ τ2) implies a restriction on
the range of admissible Prandtl number when a specified
quasi-equilibrium is used. In the case where the heat flux
is considered as the slow variable, the thermal conductiv-
ity (relaxation rate of the heat flux) is proportional to the
slow relaxation time, κ ∼ τ2, while µ ∼ τ1. In the opposite
case when the stress tensor is chosen as a slow variable,
the dependence is inverted, µ ∼ τ2 and κ ∼ τ1.

Implementation of the present QE models is a straight-
forward application of equation (19). In Figure 1, simula-
tion of Couette flow between parallel plates at different
temperatures is compared with the analytical solution.
Diffusive boundary condition was used [14]. Agreement
between simulation and analytical solution is excellent.

4.2 Binary mixture at a given Schmidt number

Our second example is the isothermal binary mixture of
ideal fluids, A and B, with particles masses mA and mB.
The locally conserved variables M are the densities of
the components, ρA,B, and the momentum of the mix-
ture j = jA + jB, where jA,B are the momenta of the
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Fig. 1. Steady state temperature profile in Couette flow be-
tween parallel plates moving with a relative velocity U , at the
temperature difference δT . Lower curve: QELBM (23) with
Pr = 0.710 (air); middle curve: LBGK model with Pr = 4; up-
per curve: QELBM (24) with Pr = 8. Symbol: simulation; line:
analytical solution. The Eckert number, Ec = (U2)/(CpδT )
is 1.5.

components. The efficiency of diffusion mixing versus vis-
cous dissipation of momentum in various fluids is charac-
terized by the Schmidt number, Sc = µ/(ρDAB), where
µ is the viscosity coefficient, DAB is the binary diffu-
sion coefficient, and ρ = ρA + ρB. Let us further intro-
duce the molar fractions XA,B = nA,B/(nA + nB) where
nA,B = ρA,B/mA,B is the number density of components,
and the reference Schmidt number, S̃c = mAB/(ρXAXB),
with mAB = (ρAρB)/(ρA + ρB) the reduced mass density.
We shall now consider a pair of quasi-equilibrium models
with two different quasi-equilibria which cover the entire
range of Schmidt number, Sc ≶ S̃c. For concreteness, we
use the standard isothermal D2Q9 model. For the single-
component case, the equilibrium f eq

i (ρ, j) to second order
in momentum is obtained by setting p/ρ = T0 = 1/3 in
equation (22). The equilibrium of the mixture is then de-
scribed by the populations f eq

A,Bi = f eq
i (ρA,B, j).

The case Sc < S̃c has been already considered re-
cently [11,12], and is mentioned here for the sake of com-
pleteness. In this case we consider the momenta of the
components, jA,B as the quasi-conserved variables N ,
and the corresponding quasi-equilibrium is immediately
read off the equilibrium of the single-component fluid;
to second order in momentum it is f∗

A,Bi(ρA,B, jA,B) =
f eq

i (ρA,B, jA,B). The continuous QE model recovers equa-
tions of the isothermal hydrodynamics that is, the
advection-diffusion equations for the densities ρA,B and
the Navier-Stokes equation for the momentum j with
µ = τ1p0, DAB = τ2p0

XAXB
mAB

, where p0 = T0(nA + nB)
is the pressure at the reference temperature T0. This
model recovers Sc = (τ1/τ2)S̃c, and according to the
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Fig. 2. Binary diffusion for the case Sc > S̃c and mB/mA =
500 at different time steps t. Symbol: simulation; line: analyt-
ical solution. Triangles: t = 500; circles: t = 3000; squares:
t = 6000; diamonds: t = 9000.

hierarchy of the relaxation times (7), pertains to the fluids
with Sc ≤ S̃c.

In the opposite case, Sc > S̃c, we choose the stress
tensors of the components, ΘA,B, as the quasi-conserved
fields N (see Eq. (24)). Corresponding quasi-equilibria,
f∗
A,Bi(ρA,B, j, ΘA,B), are constructed using the triangle

entropy method in the same way as the case Pr > PrLBGK.
The lattice Boltzmann implementation is based on (19)

and an interpolation step, as explained in [11,12]. In Fig-
ure 2, we present a simulation of diffusion of two fluids
with a high mass ratio mB = 500mA in a setup where ini-
tially a half-space is filled with the 90–10% mixture and
the other half-space — with the 10–90% mixture. Agree-
ment with the analytical solution is excellent.

5 Conclusion

In conclusion, we suggested a systematic, physically trans-
parent and realizable approach to constructing lattice
Boltzmann models for hydrodynamic systems. All the
models considered herein require only the choice of the
quasi-equilibria appropriate to the physical context of the
problem. Following the same pattern, it is straightforward
to construct kinetic models for bulk viscosity and chemical
reactions.
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